Senin, 03 Oktober 2016

fuzzy logic

Fuzzy Logic



Fuzzy Logic adalah metodologi pemecahan masalah  dengan beribu – ribu aplikasi dalam pengendali yang tersimpan dan pemrosesan informasi.Cocok untuk diimplementasikan pada sistem yang sederhana, kecil, tertanam pada mikro controller, PC multi-channel atau workstation berbasis akuisisi data dan control sistem. Fuzzy logic menyediakan cara sederhana untuk menggambarkan kesimpulan pasti dari informasi yang ambigu, samar -samar, atau tidak tepat. Sedikit banyak, fuzzy logic menyerupai pembuatan keputusan pada manusia dengan kemampuannya untuk bekerja dari data yang ditafsirkan dan mencari solusi yang tepat. Fuzzy logic pada dasarnya merupakan logika bernilai banyak (multivalued logic) yang dapat mendefinisikan nilai diantara keadaan konvensional seperti ya atau tidak, benar atau salah, hitam atau putih, dan sebagainya. Penalaran fuzzy menyediakan cara untuk memahami kinerja dari system dengan cara menilai input dan output system dari hasil pengamatan.

Secara umum, sistem fuzzy sangat cocok untuk penalaran pendekatan terutama untuk sistem yang menangani masalah-masalah yang sulit didefinisikan dengan menggunakan model matematis Misalkan, nilai masukan dan parameter sebuah sistem bersifat kurang akurat atau kurang jelas, sehingga sulit mendefinisikan model matematikanya.



Sistem fuzzy mempunyai beberapa keuntungan bila dibandingkan dengan sistem tradisional, misalkan pada jumlah aturan yang dipergunakan. Pemrosesan awal sejumlah besar nilai menjadi sebuah nilai derajat keanggotaan pada sistem fuzzy mengurangi jumlah nilai menjadi sebuah nilai derajat keanggotaan pada sistem fuzzy mengurangi jumlah nilai yang harus dipergunakan pengontrol untuk membuat suatu keputusan. Keuntungan lainnya adalah sistem fuzzy mempunyai kemampuan penalaran yang mirip dengan kemampuan penalaran manusia. Hal ini disebabkan karena sistem fuzzy mempunyai kemampuan untuk memberikan respon berdasarkan informasi yang bersifat kualitatif, tidak akurat, dan ambigu.


Fuzzy logic jika di dalam bahasa Indonesia logika Fuzzy adalah teknik/ metode yang dipakai untuk mengatasi hal yang tidak pasti pada masalah – masalah yang mempunyai banyak jawaban. Pada dasarnya Fuzzy logic merupakan logika bernilai banyak/ multivalued logic yang mampu mendefinisikan nilai diantara keadaan yang konvensional seperti benar atau salah, ya atau tidak, putih atau hitam dan lain-lain.



kepada sebuah system yang tidak jelas atau kabur atau remang-remang. Sebaliknya yang dimaksud dengan System Fuzzy yaitu sebuah system yang dibangun dengan definisi, cara kerja dan deskripsi yang jelas. Penalaran Logika Fuzzy menyediakan cara untuk memahami kinerja system dengan cara menilai input dan output system dari hasil pengamatan. Logika Fuzzy menyediakan cara untuk menggambarkan kesimpulan pasti dari informasi yang samar-samar, ambigu dan tidak tepat. Fuzzy logic Pertama kali dikembangkan oleh Lotfi A. Zadeh tahun 1965.

Penalaran Logika Fuzzy memnyediakan cara untuk memahami kinerja system dengan cara menilai input dan output system dari hasil pengamatan. Logika Fuzzy menyediakan cara untuk menggambarkan kesimpulan pasti dari informasi yang samar-samar, ambigu dan tidak tepat. Fuzzy logic Pertama kali dikembangkan oleh Lotfi A. Zadeh tahun 1965.


Fuzzy logic merupakan peningkatan dari logika Boolean yang berhadapan dengan konsep kebenaran sebagian. Saat logika klasik menyatakan bahwa segala hal dapat diekspresikan dalam istilah biner (0 atau 1, hitam atau putih, ya atau tidak), logika fuzzy menggantikan kebenaran boolean dengan tingkat kebenaran. Logika Fuzzy memungkinkan nilai keanggotaan antara 0 dan 1. Logika ini berhubungan dengan set fuzzy dan teori kemungkinan.
Fuzzy Logic adalah suatu cabang ilmu Artificial Intellegence, yaitu suatu pengetahuan yang membuat komputer dapat meniru kecerdasan manusia sehingga diharapkan komputer dapat melakukan hal-hal yang apabila dikerjakan manusia memerlukan kecerdasan.
Dengan kata lain fuzzy logic mempunyai fungsi untuk “meniru” kecerdasan yang dimiliki manusia untuk melakukan sesuatu dan mengimplementasikannya ke suatu perangkat, misalnya robot, kendaraan, peralatan rumah tangga, dan lain-lain.

  
Alasan Kenapa digunakan logika Fuzzy:

     1.  Sudah menjadi sifatnya yang kuat selama tidak membutuhkan ketepatan, input yang bebas derau, dan dapat diprogram untuk gagal dengan aman jika sensor arus balik dimatikan atau rusak. Control output adalah fungsi control halus meskipun jarak variasi inputyang cukup besar.

2. Selama fuzzy logic controller memproses aturan – aturan yang dibuat user yang memerintah system control target, ia dapat dimodifikasi dengan mudah untuk meningkatkan atau mengubah secara drastis performa system. Sensor yang baru dapat dengan mudah digabungkan kedalam system secara sederhana dengan menghasilkan aturan memerintah yang sesuai.

3. Fuzzy logic tidak terbatas pada sedikit masukan umpan-balik dan satu atau dua output control, tidak juga penting untuk menilai atau menghitung parameter rata - rata perubahan dengan tujuan agar ia diimplementasikan. Sensor data yang menyediakan beberapa indikasi untuk aksi dan reaksi system sudah cukup. Hal ini memungkinkan sensor menjadi murah dan tidak tepat sehingga menghemat biaya system keseluruhan dan kompleksitas rendah.

4. Karena operasi – operasi yang berbasiskan aturan, jumlah input yang masuk akal dapat diproses ( 1 sampai 8 atau lebih ) dan banyak output ( 1 sampai 4 atau lebih ) dihasilkan, walaupun pendefinisian rulebase secara cepat menjadi rumit jika terlalu banyak input dan output dipilih untuk implementasi tunggal selama pendefinisian rules(aturan), hubungan timbal baliknya juga harus didefinisikan. Akan lebih baik jika memecah system kedalam potongan – potongan yang lebih kecil dan menggunakan fuzzy logic controllers yang lebih kecil untuk didistribusikan pada system, masing – masing dengan tanggung jawab yang lebih terbatas.

5. Fuzzy Logic dapat mengontrol system nonlinier yang akan sulit atau tidak mungkin untuk dimodelkan secara matematis. Hal ini membuka pintu bagi system control yang secara normal dianggap tidak mungkin untuk otomatisasi.

secara sederhana
·         Karena konsep logika Fuzzy mudah dimengerti.
·         Logika Fuzzy fleksibel.
·         LogikaFuzzy mampu memodelkan fungsi-fungsi nonlinear yang sangat kompleks.
·         Logika Fuzzy dapat bekerja dengan teknik-teknik kendali secara konvensional.
·         Logika Fuzzy memiliki toleransi terhadap data-data yang tepat.
·         Logika Fuzzy didasarkan pada bahasa alami.
·  Logika Fuzzy dapat membangun dan mengaplikasikan pengalaman-pengalaman para pakar secara langsung tanpa harus melalui proses pelatihan.

Profesor Lotfi A. Zadeh  adalah guru besar pada University of California yang merupakan pencetus sekaligus yang memasarkan ide tentang cara mekanisme pengolahan atau manajemen ketidakpastian yang kemudian dikenal dengan logika fuzzy. Dalam penyajiannya vaiabel-variabel yang akan digunakan harus cukup menggambarkan ke-fuzzy-an tetapi di lain pihak persamaan-persamaan yang dihasilkan dari variable-variabel itu haruslah cukup sederhana sehingga komputasinya menjadi cukup mudah.

 Karena itu Profesor Lotfi A Zadeh kemudian memperoleh ide untuk menyajikannya dengan menentukan “derajat keanggotaan” (membership function) dari masing-masing variabelnya. Fungsi keanggotaan (membership function), adalah suatu kurva yang menunjukkan pemetaan titik input data kedalam nilai keanggotaanya (sering juga disebut dengan derajat keanggotaan) yang memiliki interval antara 0 sampai 1.
·        Derajat Keanggotaan (membership function) adalah : derajat dimana nilai crisp dengan fungsi keanggotaan ( dari 0 sampai 1 ), juga mengacu sebagai tingkat keanggotaan, nilai kebenaran, atau masukan fuzzy.
·       Label adalah nama deskriptif yang digunakan untuk mengidentifikasikan sebuah fungsi keanggotaan.
·     Fungsi Keanggotaan adalah mendefinisikan fuzzy set dengan memetakkan masukan crisp dari domainnya ke derajat keanggotaan.  Masukan Crisp adalah masukan yang tegas dan tertentu.
·  Lingkup/Domain adalah lebar fungsi keanggotaan. Jangkauan konsep, biasanya bilangan, tempat dimana fungsi keanggotaan dipetakkan.
·     Daerah Batasan Crisp adalah jangkauan seluruh nilai yang dapat diaplikasikan pada variabel sistem.


Contoh penerapan Logika Fuzzy dalam kehidupan sehari-hari:

Logika Fuzzy untuk Sistem Pengaturan Suhu Ruangan.
Untuk menentukan suhu dalam suatu ruangan, kita dapat menentukannya menggunakan Logika Fuzzy. Jika suhu dalam suatu ruangan dingin maka naikkan suhu penghangat, dan jika suhu dalam suatu ruangan panas maka naikkan suhu pendingin.

Logika Fuzzy untuk Sistem Pengaturan Lampu Lalu lintas.
Untuk memperlancar arus lalu lintas dengan adanya system yang bekerja secara otomatis diharapkan angka kecelakaan bias dikurangi. Untuk kepadatan jumlah kendaraan dibuat pemberitahuan seperti: Tidak Padat (TP), Kurang Padat (KP), Cukup Padat (CP), Padat (P) dan Sangat Padat (SP).

Penerapan Fuzzy Logic:

Air Conditioner (Mitsubishi)
AC Mitsubishi menggunakan fuzzy logic dalam system control-nya seperti berikut :
Jika suhu udara semakin hangat, daya pendinginan naik sedikit, jika udara semakin dingin, matikan daya ke bawah.

Beberapa keuntungan yang diperoleh adalah sebagai berikut :
Mesin menjadi halus sehingga tidak cepat rusak, suhu kamar yang nyaman menjadi lebih konsisten dan peningkatan efisiensi (penghematan energi).

Vacuum Cleaner (Panasonic)
Prinsip kerja Vacuum Cleaner yang diproduksi oleh Panasonic adalah sebagai berikut :
Karakteristik lantai dan jumlah debu yang dibaca oleh sensor inframerah dan mikroprosesor akan memilih daya yang sesuai dengan kontrol fuzzy berdasarkan karakteristik lantai.
Karakteristik lantai meliputi jenis (kayu, semen, ubin, kelembutan karpet, karpet tebal, dll).
Pola perubahan jumlah debu yang melewati sensor inframerah dapat dideteksi.
Mikroprosesor menetapkan pengaturan yang sesuai dengan vakum dan daya motor menggunakan skema kontrol fuzzy.
Lampu merah dan hijau dari penyedot debu menunjukkan jumlah debu tersisa di lantai.

Automatic Transmission System (Nissan, Subaru, Mitsubishi) 
Dalam sistem transmisi otomatis konvensional, sensor elektronik mengukur kecepatan kendaraan dan membuka throttle, and gear bergeser berdasarkan nilai-nilai variabel-variabel yang telah ditentukan.
Pada Nissan, tipe sistem ini tidak mampu memberikan performa kontrol seragam yang memuaskan untuk driver karena hanya menyediakan sekitar tiga pola pergeseran yang berbeda.
Dengan digunakannya fuzzy locgic membuat transmisi kontrol fuzzy mampu membaca beberapa variabel termasuk kecepatan kendaraan dan akselerasi, membuka throttle, laju perubahan pembukaan throttle, beban mesin, dan gaya mengemudi. Ketika variabel ini terdeteksi maka akan diberi bobot nilai dan agregat fuzzy dihitung untuk memutuskan kapan akan oper.
Kontroler ini dikatakan lebih fleksibel, halus, dan efisien, memberikan kinerja yang lebih baik. Sebuah sistem yang terintegrasi yang dikembangkan oleh Mitsubishi juga menggunakan logika fuzzy untuk kontrol aktif dari sistem suspensi, four-wheel-drive (traksi), kemudi, dan pendingin udara.

Game untuk Merespon Emosi dari Teks Berbahasa Indonesia Menggunakan Klasifikasi Teks dan Logika Fuzzy.
Game sebagai media hiburan telah berkembang dengan pesat seiring dengan perkembangan teknologi. Salah satu unsur yang berperan penting dalam sebuah game adalah kecerdasan buatan. Dengan kecerdasan buatan, elemen-elemen dalam game dapat berperilaku sealami mungkin layaknya manusia.
Dalam game ini dikembangkan implementasi kecerdasan buatan dalam game dimana salah satu elemen game yaitu NPC (Non Playable Character), mampu mengenali emosi dari teks berbahasa indonesia sekaligus merespon dengan perilaku sesuai dengan jenis emosinya. Metode yang digunakan dalam penelitian ini adalah klasifikasi teks sebagai penentu jenis emosi dalam teks dan logika fuzzy sebagai penentu perilaku dari NPC yang sesuai dengan jenis emosinya.



Di bawah ini adalah beberapa contoh aplikasi Fuzzy Logic:
1. Penghematan Konsumsi Daya Listrik AC (Mitsubhishi Heavy Industries Tokyo).
2. Mesin Cuci.
3. Kamera.
4. Sistem Pengereman Mobil (Nissan).
5. Pengontrol kereta bawah tanah di Sendai, Jepang. 

Sumber :
·         https://www.academia.edu/4858948/FUZZY_LOGIC_ASAL_MULA_FUZZY_LOGIC_Konsep_Fuzzy_Logic_diperkenalkan_oleh_Prof
·         http://socs.binus.ac.id/2012/03/02/pemodelan-dasar-sistem-fuzzy/
·         Suyanto, ST, MSc. Artificial Intelligence Searching, Reasoning, Planning danLearning. 

NAMA : FARHAN JULIYANTO
NPM : 13114956
KELAS : 3KA32



Sistem Pakar

Sistem Pakar

Sistem Pakar adalah sistem informasi yang berisi dengan pengetahuan dari pakar sehingga dapat digunakan untuk konsultasi. Atau Sistem pakar adalah suatu program komputer yang dirancang untuk mengambil keputusan seperti keputusan yang diambil oleh seorang atau beberapa orang pakar. Menurut Marimin (1992), sistem pakar adalah sistem perangkat lunak komputer yang menggunakan ilmu, fakta, dan teknik berpikir dalam pengambilan keputusan untuk menyelesaikan masalah-masalah yang biasanya hanya dapat diselesaikan oleh tenaga ahli dalam bidang yang bersangkutan.


Pengetahuan dari pakar di dalam sistem ini digunakan sebagi dasar oleh Sistem Pakar untuk menjawab pertanyaan (konsultasi).
Kepakaran (expertise) adalah pengetahuan yang ekstensif dan spesifik yang diperoleh melalui rangkaian pelatihan, membaca, dan pengalaman.
Sistem pakar adalah suatu program computer yang mengandung pengetahuan dari satu atau lebih pakar manusia mengenai suatu bidang spesifik. Jenis program ini pertama kali dikembangkan oleh periset kecerdasan buatan pada dasawarsa 1960-an dan 1970-an dan diterapkan secara komersial selama 1980-an. Bentuk umum sistem pakar adalah suatu program yang dibuat berdasarkan suatu set aturan yang menganalisis informasi (biasanya diberikan oleh pengguna suatu sistem) mengenai suatu kelas masalah spesifik serta analisis matematis dari masalah tersebut. Tergantung dari desainnya, sistem pakar juga mampu merekomendasikan suatu rangkaian tindakan pengguna untuk dapat menerapkan koreksi. Sistem ini memanfaatkan kapabilitas penalaran untuk mencapai suatu simpulan.

Pengetahuan membuat pakar dapat mengambil keputusan secara lebih baik dan lebih cepat daripada non-pakar dalam memecahkan problem yang kompleks. Kepakaran mempunyai sifat berjenjang, pakar top memiliki pengetahuan lebih banyak daripada pakar yunior. Tujuan Sistem Pakar adalah untuk mentransfer kepakaran dari seorang pakar ke komputer, kemudian ke orang lain (yang bukan pakar).
Sistem Pakar memiliki ciri-ciri yaitu:

·                     Terbatas pada domain keahlian tertentu.
·                     Dapat memberikan penalaran untuk data yang tidak pasti.
·                     Dapat mengemukakan rangkaian alasan yang diberikan dengan cara yang dapat dipahami. 
·                      Berdasarkan kaidah atau rule tertentu.
·                     Dirancang untuk dapat dikembangkan secara bertahap.

Dalam penyusunannya, sistem pakar mengkombinasikan kaidah-kaidah penarikan kesimpulan (inference rules) dengan basis pengetahuan tertentu yang diberikan oleh satu atau lebih pakar dalam bidang tertentu. Kombinasi dari kedua hal tersebut disimpan dalam komputer, yang selanjutnya digunakan dalam proses pengambilan keputusan untuk penyelesaian masalah tertentu.

Sistem Pakar menurut Siswanto (kecerdasan tiruan:2010) merupakan program komputer, yaitu :
·         Program komputer yang menangani masalah dunia nyata, masalah yang kompleks yang membutuhkan interpretasi pakar.
·         program komputer untuk menyelesaikan masalah dengan menggunakan komputer dengan model penalaran manusia dan mencapai kesimpulan yang sama dengan yang dicapai oleh seorang jika berhadapan dengan masalah.



Komputer berbasis pengetahuan sistem pakar merupakan program komputer yang mempunyai pengetahuan berasal dari manusia yang berpengetahuan luas(pakar) dalam domain tertentu, di mana pengetahuan di sini adalah pengetahuan manusia yang sangat minim penyebarannya, mahal serta susah didapat.

Walaupun sistem pakar dapat menyelesaikan masalah dalam domain yang terbatas berdasarkan pengetahuan yang dimasukkan ke dalamnya, tetapi sistem pakar tidak dapat menyelesaikan yang tidak dapat diselesaikan manusia. Oleh sebab itu keandalan dari sistem pakar terletak pada pengetahuan yang dimasukkan ke dalamnya.

Kondisi-kondisi di mana sistem pakar dapat membantu manusia dalam menyelesaikan masalahnya, antara lain:
·         Kebutuhan akan tenaga ahli (pakar) yang banyak, tetapi pakar yang tersedia jumlahnya sangat terbatas.
·         Pemakaian pakar yang berlebihan dalam membuat keputusan, walaupun dalam suatu tugas yang rutin.
·         Pertimbangan kritis harus dilakukan dalam waktu yang singkat untuk menghindari hal-hal yang tidak diinginkan.
·         Hasil yang optimal, seperti dalam pencernaan atau konfigurasi.
·         Sejumlah besar data yang harus diteliti oleh pakar secara kontinu.




Konsep Dasar Sistem Pakar

Menurut Efraim Turban, konsep dasar sistem pakar mengandung beberapa hal yang di antaranya:
a)  Keahlian
Merupakan suatu kelebihan penguasaan pengetahuan di bidang tertentu yang diperoleh dari pelatihan, membaca atau pengalaman. Contoh bentuk pengetahuan ; Strategi-strategi global untuk menyelesaikan masalah
b)  Ahli (Pakar)
Merupakan seseorang yang memiliki pengetahuan, penilaian, pengalaman, metode tertentu, serta mampu menerapkan keahlian dalam memberikan advise untuk pemecahan persoalan, serta mampu menjelaskan suatu tanggapan, mempelajari hal-hal baru seputar topik permasalahan, mengenali & merumuskan permasalahan, menyusun kembali pengetahuan jika dipandang perlu, memecah aturan-aturan jika dibutuhkan, dan mampu menentukan relevan tidaknya keahlian mereka.
c)  Pengalihan Keahlian
Merupakan pengalihan keahlian dari para ahli ke komputer untuk kemudian dialihkan lagi ke orang lain yang bukan ahli, dimana pengetahuan yang disimpan di komputer ini disebut dengan nama basis pengetahuan. Ada 2 tipe pengetahuan, yaitu: fakta dan prosedur (biasanya berupa aturan).
d)     Inferensi
Kemampuan untuk melakukan penalaran dengan menggunakan pengetahuan yang ada untuk menghasilkan suatu kesimpulan atau hasil akhir. dengan menggunakan motor interafe yang merupakan permodelan proses berfikir dan bernalar layaknya manusia.
e)  Aturan
Sebagian besar sistem pakar dibuat dalam bentuk rule-based system, dimana pengetahuan disimpan dalam bentuk aturan-aturan yang biasanya berbentuk IF-THEN
f)  Kemampuan Menjelaskan
Kemampuan untuk menjelaskan dan merekomendasi, yang membedakan sistem pakar dengan sistem konvensional.



Ciri-Ciri Sistem Pakar

   1.    Terbatas pada domain keahlian tertentu.
   2.    Dapat memberikan penalaran untuk data yang tidak pasti.
   3.    Dapat mengemukakan rangkaian alasan-alasan yang diberikannya dengan cara yang dapat dipahami.
   4.    Berdasarkan pada kaidah/ketentuan/rule tertentu.
   5.    Dirancang untuk dapat dikembangkan secara bertahap.
   6.    Pengetahuan dan mekanisme penalaran (inference) jelas terpisah.
   7.    Keluarannya bersifat anjuran.
   8.    Sistem dapat mengaktifkan kaidah secara searah yang sesuai dituntun oleh dialog dengan user.

Contoh Penerapan :


·         MYCIN  : Digunakan untuk mendiagnosa penyakit.
·         Dendral  : Digunakan untuk mengidentifikasikan struktur molekul campuran kimia yang tidak dikenal.
·         XCON & XSEL : Digunakan untuk konfigurasi sistem komputer besar.
·         Prospector : Digunakan dalam bidang ilmu biologi.

Penerapan Sistem Pakar

Aplikasi Sistem Pakar Tes Kepribadian Berbasis Web

Kepribadian sangatlah penting untuk diketahui setiap orang agar setiap individu mampu mengembangkan kelebihan yang dimilikinya. Seseorang yang kesulitan dalam mengembangkan dirinya kemungkinan karena tidak mengetahui sama sekali kelemahan dan kekurangan yang dimilikinya. Sistem Pakar merupakan suatu sistem yang dibangun untuk memindahkan kemampuan dari seorang atau beberapa orang pakar ke dalam komputer yang digunakan untuk memecahkan masalah yang dihadapi oleh pemakai dalam bidang tertentu. Untuk membantu setiap orang yang ingin mengetahui kepribadiannya, penulis membangun sebuah aplikasi sistem pakar berbasis web yang mampu membantu pengenalan seseorang terhadap kepribadiannya. Proses pembuatan aplikasi tersebut menggunakan metodologi berorientasi obyek dengan pemodelan visual Unified Modeling Language (UML). Pada tahap implementasi penulis menggunakan perangkat pemrograman berbasis web, Apache2Triad 1.5.2 yang berisi Apache 2.0.53, dan PHP 5.0.4. Aplikasi ini dapat membantu pengguna untuk mengetahui kepribadiannya, sehingga dapat membantu untuk mengembangkannya.


Sumber :

Artifical Neural Network

Artifical  Neural Network

Neural Network merupakan kategori ilmu Soft Computing. Neural Network sebenarnya mengadopsi dari kemampuan otak manusia yang mampu memberikan stimulasi/rangsangan, melakukan proses, dan memberikan output. Output diperoleh dari variasi stimulasi dan proses yang terjadi di dalam otak manusia. Kemampuan manusia dalam memproses informasi merupakan hasil kompleksitas proses di dalam otak. Misalnya, yang terjadi pada anak-anak, mereka mampu belajar untuk melakukan pengenalan meskipun mereka tidak mengetahui algoritma apa yang digunakan. Kekuatan komputasi yang luar biasa dari otak manusia ini merupakan sebuah keunggulan di dalam kajian ilmu pengetahuan.


Fungsi dari Neural Network diantaranya adalah:
1. Pengklasifikasian pola
2. Memetakan pola yang didapat dari input ke dalam pola baru pada output
3. Penyimpan pola yang akan dipanggil kembali
4. Memetakan pola-pola yang sejenis
5. Pengoptimasi permasalahan
6.  Prediksi

Jaringan Syaraf Tiruan (Artificial Neural Network) adalah sebuah model matematik yang berupa kumpulan unit yang terhubung secara parallel yang bentuknya menyerupai jaringan saraf pada otak manusia (neural)

            Jaringan syaraf tiruan sering digunakan juga dalam bidang kecerdasan buatan. Lalu kalau begitu apa bedanya jaringan syaraf tiruan dengan kecerdasan buatan?

Kecerdasan buatan bertujuan untuk membuat sebuah mesin dapat mengerjakan suatu pekerjaan layaknya seperti manusia. Nah itu berarti kita harus bisa membuat mesin itu berfikir , menyelesaikan suatu masalah layaknya manusia. Jaringan syaraf tiruan ini adalah salah satu algoritma berpikirnya dari kecerdasan buatan.
Menurut seorang ahli jaringan syaraf tiruan bernama Haykin S. Jaringan syaraf tiruan itu seperti sebuah prosesor yang dapat menyimpan pengetahuan dan pengalaman sehingga prosesor ini dapat bekerja menyerupai otak manusia yang dapat beradapatasi dengan masalah.

Jadi, Jaringan syaraf tiruan itu adalah metode/algoritma yang dapat membuat komputer mempunyai otak pintar seperti manusia yang bisa beradaptasi terhadap masalah.

Sejarah
Sejarah Neural Network

Perkembangan ilmu Neural Network sudah ada sejak tahun 1943 ketika Warren McCulloch dan Walter Pitts memperkenalkan perhitungan model neural network yang pertama kalinya. Mereka melakukan kombinasi beberapa processing unit sederhana bersama-sama yang mampu memberikan peningkatan secara keseluruhan pada kekuatan komputasi.



Hal ini dilanjutkan pada penelitian yang dikerjakan oleh Rosenblatt pada tahun 1950, dimana dia berhasil menemukan sebuah two-layer network, yang disebut sebagai perceptron. Perceptron memungkinkan untuk pekerjaan klasifikasi pembelajaran tertentu dengan penambahan bobot pada setiap koneksi antar-network.

1943               : Waffen McCulloh dan Walter Pitts merancang model matematis dari   sel-sel Otak.
1949               :Hebb menyatakan informasi dapat disimpan dalam koneksi-koneksi antar neuron.
1958                : Rosenblatt mengembangkan konsep dasar tentang perceptron untuk klasifikasi pola
1982               :Kohonen mengembangkan metode jaringan syaraf buatan unsupervised learning
1982               :Grossberg mengenalkan sejumlah arsitektur jaringan ( ART, ART2, ART3)
1982               :Hopfield mengembangkan jaringan syaraf reccurent untuk menyimpan informasi.

Bagaimana Jaringan Syaraf Tiruan Bekerja ? 

Artificial Neural Network Bekerja
Ada tiga paradigma bagaimana jaringan syaraf tiruan dapat berfikir dan beradaptasi terhadap suatu masalah, tiga paradigma tersebut adalah :
1.             Supervised Learning
2.            Unsupervised Learning
3.            Reinforced Learning

Supervised Learning (pembelajaran terawasi) adalah metode pembelajaran yang menyimpulkan pemetaan data dengan membandingkan ketidaksesuaian antara pemetaan data saat ini ( yang mengandung knowledge saat ini) dengan pemetaan data sebelumnya (yang mengandung knowledge sebelumnya).
Unsupervised Learning (pembelajaran tidak terawasi) adalah metode pembelajaran yang mengelompokkan unit-unit yang hampir sama dalam area tertentu. Metode ini biasa digunakan untuk pengklasifikasikan pola.
Reinforced Learning, adalah metode yang membuat system (system) dapat belajar dari keputusan yang diambil sebelumnya dengan cara memberikan reward setiap kali system melakukan suatu hal yang benar. Dengan pemberian reward ini system akan mencari hal apa yang harus dilakukan agar mendapatkan lebih banyak lagi reward, sehingga system dapat terus berkembang. System (learner) dibiarkan belajar sendiri dengan lingkungan, ketika system bermain berdasarkan rule maka akan diberi reward, ketika tidak akan diberi punishment.
Sebelum menggunakan Jaringan Syaraf Tiruan kita harus mempertimbangkan tiga hal yaitu :
1.             Model apa yang akan kita gunakan
2.            Algoritma belajar apa yang akan kita gunakan
3.            Bagaimana caranya agar JST tahan terhadap masalah

Manfaat Jaringan Syaraf Tiruan

Dalam kehidupan sehari-hari jaringan syaraf tiruan digunakan dalam aplikasi yang berkaitan dengan hal-hal berikut :
   1.    Identifikasi dan control : Kontrol kendaraan, Natural Resources  Mangement
   2.    Pengambil keputusan dalam video game: Chess, Poker, Backgammon
   3.    Pengenal Pola : Radar, Pengenal wajah, Pengenal objek
   4.    Diagnosa Medis untuk mendeteksi penyakit kangker
Konsep Neural Network

1.  Proses Kerja Jaringan Syaraf Pada Otak Manusia
Ide dasar Neural Network dimulai dari otak manusia, dimana otak memuat  sekitar 1011 neuron. Neuron ini berfungsi memproses setiap informasi yang masuk. Satu neuron memiliki 1 akson, dan minimal 1 dendrit. Setiap sel syaraf terhubung dengan syaraf lain, jumlahnya mencapai sekitar 104 sinapsis. Masing-masing sel itu saling berinteraksi satu sama lain yang menghasilkan kemampuan tertentu pada kerja otak manusia.



Dari gambar di atas, bisa dilihat ada beberapa bagian dari otak manusia, yaitu:
1. Dendrit (Dendrites) berfungsi untuk mengirimkan impuls yang diterima ke badan sel syaraf.
2. Akson (Axon) berfungsi untuk mengirimkan impuls dari badan sel ke jaringan lain
3. Sinapsis berfungsi sebagai unit fungsional di antara dua sel syaraf.
Proses yang terjadi pada otak manusia adalah:
Sebuah neuron menerima impuls dari neuron lain melalui dendrit dan mengirimkan sinyal yang dihasilkan oleh badan sel melalui akson. Akson dari sel syaraf ini bercabang-cabang dan berhubungan dengan dendrit dari sel syaraf lain dengan cara mengirimkan impuls melalui sinapsis. Sinapsis adalah unit fungsional antara 2 buah sel syaraf, misal A dan B, dimana yang satu adalah serabut akson dari neuron A dan satunya lagi adalah dendrit dari neuron B. Kekuatan sinapsis bisa menurun/meningkat tergantung seberapa besar tingkat propagasi (penyiaran) sinyal yang diterimanya. Impuls-impuls sinyal (informasi) akan diterima oleh neuron lain jika memenuhi batasan tertentu, yang sering disebut dengan nilai ambang (threshold).

2.  Struktur Neural Network


Dari struktur neuron pada otak manusia, dan proses kerja yang dijelaskan di atas, maka konsep dasar pembangunan neural network buatan (Artificial Neural Network) terbentuk. Ide mendasar dari Artificial Neural Network (ANN) adalah mengadopsi mekanisme berpikir sebuah sistem atau aplikasi yang menyerupai otak manusia, baik untuk pemrosesan berbagai sinyal elemen yang diterima, toleransi terhadap kesalahan/error, dan juga parallel processing.


Karakteristik dari ANN dilihat dari pola hubungan antar neuron, metode penentuan bobot dari tiap koneksi, dan fungsi aktivasinya. Gambar di atas menjelaskan struktur ANN secara mendasar, yang dalam kenyataannya tidak hanya sederhana seperti itu.
1. Input, berfungsi seperti dendrite
2.Output, berfungsi seperti akson
3. Fungsi aktivasi, berfungsi seperti sinapsis
Neural network dibangun dari banyak node/unit yang dihubungkan oleh link secara langsung. Link dari unit yang satu ke unit yang lainnya digunakan untuk melakukan propagasi aktivasi dari unit pertama ke unit selanjutnya. Setiap link memiliki bobot numerik. Bobot ini menentukan kekuatan serta penanda dari sebuah konektivitas.

Proses pada ANN dimulai dari input yang diterima oleh neuron beserta dengan nilai bobot dari tiap-tiap input yang ada. Setelah masuk ke dalam neuron, nilai input yang ada akan dijumlahkan oleh suatu fungsi perambatan (summing function), yang bisa dilihat seperti pada di gambar dengan lambang sigma (∑). Hasil penjumlahan akan diproses oleh fungsi aktivasi setiap neuron, disini akan dibandingkan hasil penjumlahan dengan threshold (nilai ambang) tertentu. Jika nilai melebihi threshold, maka aktivasi neuron akan dibatalkan, sebaliknya, jika masih dibawah nilaithreshold, neuron akan diaktifkan. Setelah aktif, neuron akan mengirimkan nilai output melalui bobot-bobot outputnya ke semua neuron yang berhubungan dengannya. Proses ini akan terus berulang pada input-input selanjutnya.

ANN terdiri dari banyak neuron di dalamnya. Neuron-neuron ini akan dikelompokkan ke dalam beberapa layer. Neuron yang terdapat pada tiap layer dihubungkan dengan neuron pada layer lainnya. Hal ini tentunya tidak berlaku pada layer input dan output, tapi hanya layer yang berada di antaranya. Informasi yang diterima di layer input dilanjutkan ke layer-layer dalam ANN secara satu persatu hingga mencapai layer terakhir/layer output. Layer yang terletak di antara input dan output disebut sebagai hidden layer. Namun, tidak semua ANN memiliki hidden layer, ada juga yang hanya terdapat layer input dan output saja.



Penerapan Artifical Neural Network

Artificial Neural Network (Jaringan Syaraf Tiruan), dimana dalam sepuluh tahun terakhir pengaplikasiannya telah banyak dikembangkan di berbagai bidang dalam kehidupan manusia. Seperti contoh Aplikasi Adaptive Inteligent System adalah Sistem mengenali Panas, Hangat, dan Dingin Menggunakan Jaringan Syaraf Tiruan dan Himpunan Fuzzy begitu juga seperti Adaptive Noise Canceling yang menggunakan jaringan syaraf tiruan untuk membersihkan gangguan pada telephone (dikenal dengan echo) dan mengurangi kesalahan tranmisi modem dll.

Salah satu contoh adalah :

Dalam perkembangannya, ilmu Kecerdasan Buatan atau Artificial Intelligence (AI) telah banyak diterapkan pada teknologi komputer dalam menyelesaikan suatu masalah yang umumnya memerlukan pemikiran seorang ahli, dan ANN Perceptron merupakan salah satu dari metode AI yang telah terbukti cukup handal untuk digunakan sebagai teknik pengenalan atau pengindentifikasian.Tujuan dari dibuatnya karya tulis ilmiah ini adalah untuk menerapkan metode Jaringan Syaraf Tiruan atau Artificial Neural Network dengan algortima Perceptron dalam menentukan penyakit cacar daun dan bercak daun pada daun tembakau serta daun cengkeh, dimana sampel daun-daun tersebut dianalisis melalui kedelapan gejala atau ciri yang ditimbulkannya.

Tahapan awal yang dilakukan yaitu mengumpulkan beberapa sampel daun tembakau dan daun cengkeh, baik yang terkena penyakit maupun tidak. Kemudian mengelompokkan gejala atau ciri khusus yang ditimbulkan pada setiap daunnya dari penyakit cacar daun dan bercak daun. Ciri penyakit yang positif terlihat pada masing-masing daun akan direpresentasikan dengan nilai bipolar [1, -1], dimana ciri tersebut akan digunakan sebagai nilai masukan pada tahap pelatihan (training) dan pengujian (testing) dalam metode ANN.

 Dari hasil pengujian terhadap sampel sebanyak 20 daun untuk tahap training dan 10 sampel daun untuk tahap testing, dengan perbandingan penyakit bercak daun dan cacar daun adalah 50 : 50, learning rate sebesar 0,7, lapisan masukan sebanyak 8 buah, dan 1 buah lapisan luaran, didapat bahwa metode ANN Perceptron memiliki persentase keberhasilan pengenalan penyakit sebesar 61% - 73% untuk data non-learning, dan 100% untuk data learning pada kedua jenis daun tersebut.

Sumber :
http://www.psych.utoronto.ca/users/reingold/courses/ai/nn.html
http://sutikno.blog.undip.ac.id/files/2011/11/2-Fungsi-Aktivasi-dan-Perceptron.pdf

www.ejournal.himsya.ac.id/index.php/HIMSYATECH/article/view/45/40

http://socs.binus.ac.id/2012/07/26/konsep-neural-network/

http://note-why.blogspot.co.id/2012/10/artificial-neural-network-ann.html

NAMA : FARHAN JULIYANTO
NPM : 13114956
KELAS : 3KA32